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The statistical mechanics of ideal particles in null dimension is obtained from a recently given polylogarithm
formulation by analytic continuation. The chemical potential behaves anomalously as the dimensionalityd→0,
whered50 appears to be an essential singularity of the reduced density. As a result, the temperature becomes
irrelevant in null dimension. Also, the exclusion principle reappears in the coordinate space in the guise of an
infinitely high energy barrier. Bose particles are not confinable. Standard thermodynamic quantities have been
obtained. These results show some relevance to quantum dots in ultrasmall volumes.
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PACS number~s!: 05.30.2d

There is considerable current interest in quasizero-
dimension physics, which refers to the study of electrons and
excitons in nanostructures@1~a!#. Known variously as quan-
tum dots, Coulomb islands, etc., a finite number of these
particles are confined in very small volumes quantized in all
three directions. Efforts are being made to make the volumes
of confinement ever smaller, possibly to the very limits of
dimensions of these particles. As these volumes shrink, it has
been found that~i! interacting particles increasingly behave
like ideal particles, and~ii ! the ground state energies are
blueshifted. The emerging dominance of the ideal behavior
recalls the underlying basis of ther s expansion in the theory
of the electron gas. To our knowledge the blueshift has not
yet been satisfactorily explained@1~b!#.

Physically it seems plausible to assume that shrinking the
volume confining interacting particles is the same as lower-
ing the dimensionalityd of the system of ideal particles. A
rigorous proof may be difficult to give. If assumed, the sta-
tistical mechanics of ideal particles in null-d could provide
some useful insight and limits into the behavior of quantum
dots. It may, of course, have some intrinsic interests of its
own, such as, e.g., the classical spins in zero spin dimension
@2#.

In recent years some new methods@3–6# have been de-
veloped which have finally led to the theory of polyloga-
rithms, and to a unification of the statistical mechanics of
ideal Bose, Fermi, and classical particles@7#. The statistical,
thermal, and dimensional properties of ideal particles can at
once be related to the structural properties of the polyloga-
rithms. Since this mathematics is seldom applied in physics
@8#, we shall first briefly introduce it.

Themth order polylogarithm inz, denoted Lim~z!, where
z may be a complex number, is a generalization of the
dilogarithm Li2~z! due to Euler, itself a transcendental func-
tion @9#. It is real if z real andz<1, and complex ifz real and

z.1. It is an analytic function ofz, regular everywhere ex-
cept on the branch cut fromz51 to `. Classical polyloga-
rithms are defined for integral orders only,m52,3,... . The
dilogarithm is the seminal one, from which the trilogarithm
is obtained, from which the quadrilogarithm, etc. There is a
recurrence relationz]/]zLim11~z!5Lim~z!.

A very useful integral representation for the polyloga-
rithm of orderm11 is as follows@7#:

Lim11~z!5
1

G~m11!
E
0

z

~a2 lnt !m
dt

12t
, a5 lnz. ~1!

Using ~1! we can deduce functional relations like the dupli-
cation formula Lim~z!1Lim~2z!5212mLim~z2!, asymptotic
properties, bounds, etc.@9# Also, by ~1! we can introduce
polylogarithms of lower order@7#, e.g., Li1~z!52ln~12z!
and Li0~z!5z/~12z!, the monologarithm and nil-logarithm,
respectively, which are the only polylogarithms of non-
negative order expressible in closed form. We can define the
polylogarithms of half-integral order by analytic continua-
tion. Although not recognized in the classical theory, these
specially defined polylogarithms are useful in physics.

The statistical mechanics of ideal particles is unifiable in
the following way: Letr[N/Ld be the number density andl
the thermal wavelength. Then the reduced density of a non-
relativistic ideal gas ind dimensions may be given as@7#

rld5sgn~z!Lid/2~z!, z5 H z if Bose
2z if Fermi, ~2!

where the fugacityz5expbm, m the chemical potential,
b51/kT, T temperature, andk the Boltzmann constant. The
spin multiplicity 2s11 has been suppressed being inessential
here. The grand partition function follows from~2!:
Q5exp$sgn~z!(l/L)dLid/211~z!%.
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The dimensionalityd enters the polylogarithm through its
order—an integral order ifd is even, and a half-integral or-
der if d is odd. The fugacityz alone determines the argument
of the polylogarithm. The physically applicable domains for
Fermi and Bose particles are, respectively, the intervals
z5~2`,0! and ~0,1!, whereupon the polylogarithm is real.
~Any point in this interval represents an adiabatic line in
thermodynamic planes.!

The thermodynamics of Fermi particles are regular since
the polylogarithm is free of singularities on the negative real
axis ofz. The low-T properties of Fermi particles are simply
the asymptotic properties of Lid/2~z!, z→2`. The domain of
Bose particles is also free of singularities except at the end
point z51, which is a terminus of a branch cut ifd.0. The
branch point singularity atz51 is the mathematical source of
the Bose-Einstein transition@3#. The branch cut running from
z51 to ` corresponds to the Yang-Lee zeros in the thermo-
dynamic limit @10#. The classical ideal gas is described by
the conditionz→60, i.e., Lid/2~z!5z, where the polyloga-
rithm is self-similar, hence generallyd independent. The
classical physics centers on the common point of the two
domainsz50, which partitions the interval ofz according to
statistics.

The thermodynamic functions can be expressed in poly-
logarithms through their relationship to the density. The
pressureP, the energyU, the entropyS, and fluctuations in
number of particlesY are, respectively, as follows@7#:

br21P5Lid/211~z!/Lid/2~z!, ~3!

bU/N5~d/2!Lid/211~z!/Lid/2~z!, ~4!

S/Nk5~d/211!Lid/211~z!/Lid/2~z!2 lnuzu, ~5!

Y5Lid/221~z!/Lid/2~z!. ~6!

By the principle of analytic continuation, these results may
be assumed valid for anyd dimensions. In fact, by~3!–~6!
all known results can be recovered. They denote a unification
of the statistical thermodynamics of ideal particles.

If particles are extremely relativistic or if their dispersion
relation is merely linear~i.e., ep5np, wheren is the veloc-
ity!, the expression for the reduced density~2! changes as
follows: l is replaced byh5Ap \bn@G~1/2!/G~d/211/2!#1/d

and the order of the polylogarithmd/2 by d. Now only the
polylogarithms of integral order appear. There are no other
changes. The thermodynamic relationships~3!–~6! remain
the same, except ford/2 being replaced byd therein.

Although it would be difficult to construct the statistical
mechanics of ideal particles in null-d in a conventional man-
ner, our formalism allows us to obtain an equivalent one by
the principle of analytic continuation. Also, ifd→0, it is
immaterial whether the particles are nonrelativistic or ex-
tremely relativistic. Hence we shall consider only the nonrel-
ativistic case.

The volume in null-d, a point or a dot, differs fundamen-
tally from the volumes ind.0 which are hypercubical in
lengthL. The density in null-d thus must refer to the number
of particles per dot, i.e., an absolute fixed number, sayn. It is
not like the densities ind.0, which can be changed even if
there are a fixed number of particles. This quantityn evi-
dently is a measure of confinability. We shall assume it to be

the same as the number of particles that remain within the
enclosing volume when it shrinks to a point adiabatically.

The reduced density for spinless nonrelativistic Fermi
particles ind dimensions follows from~2!:

rld52Lid/2~2z!, 0,z,`. ~7!

Settingd50, replacingr by n, we obtain

n52Li0~2z!5
z

11z
. ~8!

Now n must beT independent. The only way that this physi-
cal requirement can be met is ifz→`, resulting inn51. In
null-d evidently only one spinless Fermi particle~two if
spin-1/2! can be accommodated, a restatement of the Pauli
exclusion principle. It is equivalent to the coordinate space
version of an electron in the 1S atomic orbital state.

The above result is obtained in effect by takingd→0 first
and z→` second, where the second limit is physically
driven. That is, ifd→0, evidentlyz strongly depends on it
such thatz→` itself. Their relationship may be uncovered as
follows: If z→`, the polylogarithm in~7! may be replaced
by its asymptotic form which can be obtained from~1! @7#,

rld5
~ lnz!d/2

G~d/211!
1o„~ lnz!d/221

…. ~9!

We note that if dÞ0, z→` meansT→0, recalling that
m(T50)5eF , 0,eF,`, andeF is the Fermi energy. In fact,
through the above asymptotic form we recover the standard
result

r5
~kF

2/4p!d/2

G~d/211!
, ~10!

wherekF is the Fermi wave vector. Now, ifd→0, we can
recover the same previous result provided thatk F

21→0 not as
fast. Thus from~9! we obtain the following two interesting
conditions:

lim
z→`,d→0

~d/2!ln lnz50, ~11a!

lim
z→`,d→0

~d/2!lnz5`. ~11b!

Since the null-d volume is singular, it is not possible to
give a Taylor expansion of~7! aboutd50. The slope, which
may be obtained from~9!, behaves as12 ln ln z ~the leading
term only!. The nth derivative with respect tod is in fact
~12 ln ln z!

n, so that all the derivatives are divergent asz→`
and d→0. This behavior suggests thatd50 is an essential
singularity of the reduced density. One can construct the
d→0 form of the chemical potential which satisfies~11a! and
~11b!. Noting thatd→0 impliesz→`, let

m;d2x, x.1 ~d→0!. ~12!

Substituting~12! into ~9!, we obtain

rld;e2~x/2!d lnd ~d→0!, ~13!
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which has the requisite behavior of an essential singularity
~e.g., the slope;2lnd, d→0!.

In null-d, thermodynamics in the ordinary sense would
seem out of place. But if our formulation is analytically con-
tinued, what may be purely formal still seems to lend a con-
sistent description. For example,z→` at anyT means that
m→` independently ofT, i.e., T is not relevant in null-d.
Sincem→`, it is energetically not possible to bring in an-
other particle if one is already present. In null-d, the exclu-
sion principle appears in the guise of an infinitely large
chemical potential or, equivalently, an infinitely high poten-
tial barrier to particles in the reservoir. There is no classical
analog.

The state ofz5`, as noted, can also be realized indÞ0 if
T50. Thus the ground state of Fermi particles indÞ0 should
to some extent be mirrored in the thermodynamics ind50.
For example, from ~5!, S/k5Li1~2z!/Li 0~2z!2ln z
;z21 lnz→0 as z→`. There is no entropy. From~6!,
Y5Li21~2z!/Li 0(2z);z21→0 asz→`. There are no fluc-
tuations in number of particles. But from~4!,
bU5(d/2)Li1~2z!/Li 0(2z);(d/2)lnz→` by ~11b!. Also
from ~3!, bP5Li1~2z!/Li 0~2z!;lnz→` similarly or
P5m→`. An infinitely large energy or pressure implies an
infinitely large momentum, necessary to preserve the uncer-
tainty principle in null-d, where presumably there is no un-
certainty in the position. Similarly a total uncertainty in the
momentum of a particle in null-d implies that it is never in a
stationary state, i.e., there always is a time evolution going
from state to state. The energy and pressure increase very
sharply with confinement asU;d12x and P;d2x, where
x.1 asd→0.

The reduced density for ideal nonrelativistic Bose par-
ticles ind follows from ~2!:

rld5Lid/2~z!, 0<z<1. ~14!

By settingd50 and replacingr by n, we have

n5Li0~z!5
z

12z
. ~15!

For the right-hand side of~15! to be T independent, as it
must, it is necessary thatz50, i.e.,m→2` at anyT. Hence
T has no meaning here in null-d just as in the Fermi case.
Thatz50 of course means thatn50. We must conclude that
ideal Bose particles cannot be confined in null-d because the
chemical potential is negative infinite.

An infinitely large negative chemical potential places par-
ticles over edges of a potential precipice. They will fall out
and escape from a confinement. In contrast, an infinitely
large positive chemical potential acts as a potential barrier to
the particles without and a confinement to the particles
within. Also, z50 is the state ofT5`, the ‘‘ultimate’’ clas-
sical limit. Recall that the classical chemical potential be-
haves asm;T lnT21 asT→`. Hence, equivalently, particles
with so large a thermal energy cannot be confined to a point.

The other possibilityz51 ~i.e., m50! must be excluded
since it would imply an existence of Bose-Einstein conden-
sation at allT. Also recall that Bose-Einstein condensation
exists ifd.2 only ~d.1 if extreme relativistic! @3#. If z51,
P5U50 from ~3! and ~4!. Hence there can be no particles
out of the condensate. The existence of Bose-Einstein con-
densation in null-d then would imply a massive violation of
the uncertainty principle.

As in the Fermi case, it is possible to shed some light on
the behavior of the reduced density neard50. To obtain~15!
we have takend→0 first, thenz→0 followed ~physically
required!. Now reversing the order, letz→0 first. Then, us-
ing ~1!, one can prove that the polylog becomes self-similar,
i.e.,

rld5Lid/2~z!5z1o~z2!. ~16!

Now one can taked→0 recovering the same previous result.
Being self-similar, the right-hand side of~16! is to order
o(z2) d independent, and all derivatives vanish to this order.
Sincem→2` asd→0, let m;2d2y, wherey.0 asd→0,
structurally similar to the chemical potential for Fermi par-
ticles ~12!. Then

rld;e2d2y
, y.0 ~d→0!, ~17!

also essentially singular atd50.
From ~3! and ~4!, to order o(z), bU5N(d/2);d and

bP5r;exp2d2y, both vanishing asd→0. The strong van-
ishing of the slope of the reduced density asd→0 indicates
that most particles will have escaped confinement with little
energy well befored→0. This is in contrast to the behavior
of Fermi particles, for which the null-d population is attained
with a greatly rising energy only afterd→0.

Are Bose particles really not confinable? Photons evi-
dently are not because of the finite speed. Elementary exci-
tations like phonons and plasmons—quasibosons—being ex-
tended over large regions of the physical space, are not
confined. Excitons have a large Bohr radius@11#. They are,
in fact, thought to be a realization of ideal Bose particles in
3d @12#.

In conclusion, if the small volume limit of interacting
particles and the low-dimensionality limit of ideal particles
are equivalent, quantum dots in ultrasmall volumes@13#
should be bounded by our null-d results. The blueshift in the
ground state energy for the ‘‘zero-dimension’’ electrons may
very well be foreshadowing the steep rise in the energy of
ideal Fermi particles asd→0. The breakdown of excitons in
the strong confinement regime@1~a!#, however, does not nec-
essarily indicate the nonconfinability of Bose particles, but
more likely their shallow binding state. A more definitive
test is needed.

The author thanks Dieter Hartmann and Robert L. Ander-
son for discussions. This work was supported in part by the
NSF.
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